^{新线检测} 第九讲 CT 技术和康普顿散射 成象检测技术

郑世才

(新立机器厂,北京 100039)

COM PUTED TOMO GRAPHY AND COM PTON SCATTER MAGING TECHNIQUE

Zheng Shica i (Xin liM achinery Plant, Beijing)

1 射线CT 检测技术

11 概述

CT 技术, 即计算机辅助层析成象技术, 与一般 的射线照相检测技术存在根本的不同。这种技术是 采用一面状射线束透射工件的一个层面, 检测器阵 列与射线束处于同一平面, 通过机械驱动装置对工 件形成一定的扫描透射, 采集射线束穿过该层面的 大量数据, 通过计算和变换, 得到该层面的相关信 息, 并重建该层面的图象, 实现对这一层面的检测。

CT 技术是根据投影数据重建物体的图象, 它的数学原理, 即拉冬(Radon) 变换和逆变换是在 1917年由拉冬建立的。但直到 1950年才具体应用 于射电天文学领域, 1971年英国 EM I 公司研制出 世界上第一台医疗射线 CT 装置, 并称为计算机辅 助层析成象扫描器(CA T)。70年代末期人们开始致 力于工业应用研究, 这就要求使用更高能量的射线, 使其具有更高的分辨力。70年代末 80年代初美国 开始了专门的工业 CT 系统的研制, 主要是针对大 型固体火箭发动机和小型精密工件的检测。我国从 80年代开始进行 CT 技术和装置的研究。1993年 ¥ 射线 CT 装置研制成功, 并在某些方面获得了成功 的应用。射线 CT 技术、胶片射线照相检测技术和射 线实时成象检测技术的比较见表 9-1。

工业CT 技术目前主要应用在下列方面:

(1)缺陷检测 主要用于检验小型 复杂及精 密的铸件和锻件,扫描检测大型固体火箭发动机,这 样的 CT 系统使用电子直线加速器 X 射线源,能量 高达 25M eV,可检验直径达 3m 的大型固体火箭发 动机。

(2) 尺寸测量 如精密铸造的飞机发动机叶片

射线检测- 技术	射线吸收率/%			空间分辨力	动态范围	数字图象
	80	420	2		× 10 ²	处理能力
	keV	keV	M eV			
胶片 照相	5	2	05	> 5	2~ 10	需胶片 扫描器
实时 成象	20	8	2	2 5	5~ 20	典型为 8bit 数据
CT 技术	99	95	80	0 2~ 4 5	10 ⁴	典型为 16bit 数据

表 9-1 三种射线检测技术的特点比较

的尺寸测量,误差 0 1mm。

(3)结构和密度分布检查 在航空工业, CT 技 术用于检验和评价复合材料和复合结构, 评价某些 复合件的制造过程, 也用于一系列情况下样件的评 价。这种检测与评价过程, 大大简化了取样破坏分析 过程; 另外可检查工程陶瓷和粉末冶金产品, 特别是 高强度、形状复杂的产品, 在制造过程中发生的材料 或成分变化; 也可对组件结构进行检查。

(4) CT-CAD 技术 利用 CT 技术获得的结构 和密度信息,为复杂产品的复制和新产品的设计开 发进行计算机辅助设计。

1 2 CT 技术原理

1.2.1 投影数据与拉冬(Radon)变换

射线 CT 图象是从不同方向对物体的一个截面 透照,记录每一方向的透照数据,每一记录是沿一特 定路径对射线衰减的积分,用这样采集到的数据重 建物体截面的射线衰减系数分布图象。从数学的角 度看,所得到的数据构成了物体截面的一个投影。

如图 9-1 所示, 在物体的截面上定义两个坐标 系, 即 固定坐标系, 即 *x* 和 *y* 轴, 与物体相对固

图 9-1 投影数据示意图

定,称为物体坐标系。 投影坐标系,即 t 和 s 轴, s 方向沿投影方向(射线入射方向), t 轴相对于 x 轴 转动 θ角,称为投影(空间)坐标系。这个坐标系也可 以采用极坐标 t 和 θ

两个坐标系的原点都在转动中心,投影坐标系 相对于固定坐标系转动了 θ 角度,截面上一点的坐 标分别为(x, y)和(t, s),它们之间的关系为

 $t = x \cos \theta + y \sin \theta$

$$s = -x\sin\theta + y\cos\theta$$

对物体某一层面上的一个一般函数 g(x, y), 可作出 一个新的函数 $P_{\theta}(t)$, 即

在固定坐标系中

$$P_{\theta}(t) = g(x, y) dx dy$$

在投影坐标系中

$$P_{\theta}(t) = g(t, s) ds$$

 $P_{\theta}(t)$ 称为投影数据, 对 0< θ< π可得到一系列投影 数据。投影数据 $P_{\theta}(t)$ 在给定投影角 θ时是 t的一维 函数, 显然也是 t, θ的二维函数。它将物体空间一点 (x, y)的数据变换(映射)到投影空间(t, θ), 这种变 换称为拉冬变换。拉冬变换可将一个二维函数变换 为投影数据。投影数据空间的坐标若以极坐标(t, θ) 表示, 则称为拉冬空间。实际空间的一个线积分路径 对应于拉冬空间的一点。

在射线 CT 技术中, 以 μ 表示物体某一层面的 射线线衰减系数, 对截面上坐标为(x, y)或(t, s)的 一点应有

$$\mu(x, y) = \mu(t, s)$$

射线穿过该层面坐标为 t(投影坐标系), 沿 s 方向路 径的衰减可写为

$$I\theta(t) = I_0 \exp\left[-\mu(t,s) ds\right]$$

改写上式,并取自然对数得到

$$\ln \frac{I_0}{I_{\theta}(t)} = -\mu_{\theta}(t,s) \,\mathrm{d}s$$

显然,上式表示的是一投影数据。将上式中比的对数 记作 $P_{\theta}(t)$,即

$$P_{\theta}(t) = \ln \frac{I_0}{I_{\theta}(t)} = -\mu_{\theta}(t, s) ds$$

t 是检测器在投影坐标系中的位置,对 0< θ< π可得 到一系列投影数据,即射线沿截面上某方向路径的 衰减的对数可构成一投影数据。射线 CT 技术重建 的图象就是层面上线衰减系数的分布。

 1.2.2 傅里叶变换与投影中心频谱定理(投影中心 切片定理)

函数傅里叶变换是在频域分析一个信号,它可 将任何一个函数展开为三角函数,即任何一个函数 的值都可以用具有一定幅度和频率的一系列三角函 数值的和表示。如一个周期为*T*的一维函数*X*(*T*), 其傅里叶变换为

$$X (T) = a_0 + (a_n \cos n \omega_0 t + b_n \sin \omega_0 n t)$$

式中
$$\omega = \frac{2\pi}{T}$$

 $a_n = \frac{2}{T} X(T) \cos n\omega_b t \cdot dt$
 $b_n = \frac{2}{T} X(T) \sin n\omega_b t \cdot dt$

对于非周期函数,展开式应用积分表示。由函数 可求出其傅里叶变换,反之,由函数的傅里叶变换也 可求出函数。

目前 CT 图象重建算法基于的是投影中心频谱 定理(投影中心切片定理,投影层析定理)。这个定理 给出了函数的一维傅里叶变换与二维傅里叶变换的 关系,即投影数据的一维傅里叶变换是物体二维傅 里叶变换的一部分。因此,按照投影中心频谱定理, 只要得到足够的投影数据,就可以得到物体图象函 数的傅里叶变换,这样,通过傅里叶逆变换可以重建 物体图象的函数。

1.2.3 重建原理的理解

射线 CT 图象是一个数字化的重建图象, 图象 由象素矩阵构成, 重建过程包括两个基本阶段, 即 将测量得到的沿不同路径穿过物体截面的射线强度 转换为投影数据。 利用重建算法处理投影数据, 建立物体截面的灰度级数字图象。

对 CT 技术的重建原理可作如下简化理解, 如 图 9-2 所示, 设一截面由四个单元 X₁, X₂, X₃ 和 X₄ 构成。按图中所示方向透照, 得到四组数据, 即 Y₁, Y₂, Y₃ 和 Y₄, 这样可得到下列方程组

 $X_1 + X_2 = Y_1$

图 9-2 CT 图象的重建原理

$$X_{1} + X_{3} = Y_{2}$$
$$X_{2} + X_{3} = Y_{3}$$
$$X_{2} + X_{4} = Y_{4}$$

解此方程组,得到

X

$$X_{1} = \frac{1}{2} [Y_{1} + Y_{2} - Y_{3}]$$

$$X_{2} = \frac{1}{2} [Y_{1} - Y_{2} + Y_{3}]$$

$$X_{3} = \frac{1}{2} [Y_{2} - Y_{1} + Y_{3}]$$

$$4 = Y_{4} - \frac{1}{2} [Y_{1} - Y_{2} + Y_{3}]$$

由 X₁, X₂, X₃和 X₄即可重建图象。显然, 对实际的 CT 图象将得到一个庞大的方程组, 因此必须研究 解此方程组的方法, 这就是 CT 成象技术所发展的 各种重建算法。

CT 成象技术所发展的各种重建算法分为变换 方法和迭代方法两种基本类型。 变换方法是基于投 影数据的反演公式, 与迭代方法比较, 变换方法是快 速方法, 并可得到质量良好的图象。 变换方法的两个 主要类型是滤波-逆投影算法和直接傅里叶算法。 在 工业 CT 系统中普遍使用的是滤波-逆投影算法。

13 CT 图象

1.3.1 图象质量

CT 图象是数字化的重建图象,图象由象素矩 阵构成,每个象素代表物体层面上一个小体积元,反 映了这个小体积元对射线的衰减特性。

CT 图象质量的主要指标是空间分辨力和对比 度灵敏度(密度分辨力)。

空间分辨力表征了 CT 系统对细节成象的能力, 定量地表示了所能区分两个细节的最小间距。影响 CT 系统空间分辨力的主要因素有采集数据过程 中射线源移动的线距离、射线源的尺寸、几何放大倍数、检测器孔径和图象重建算法等。此外, 也受到显示系统的限制。

对比度灵敏度表征了CT 系统对密度变化的识

别能力,通常定义为图象上可识别的最小物体对比 度,即

对比度 =
$$\frac{\mu_{f} - \mu_{b}}{\mu_{b}} \times 100\%$$

式中 μ_b——背景材料的线衰减系数

μ_f——细节材料的线衰减系数

如果 μ_b< μ_f, 则分母取 μ_b。上述定义假定细节扩 展到了整个层面厚度, 如层面厚度为 *H*, 细节厚度 为 *h*, 则对比度应乘以 *h/H*。

影响对比度灵敏度的主要因素是系统噪声,特别是成象的光子数目。在给定的射线能量下,光子数目受到源强度、数据采集时间、检测器孔径尺寸、源与检测器的距离和滤波等因素的影响。

空间分辨力和对比度灵敏度可采用不同的方法 测定。A STM E1695-95《CT 系统性能测量方法》 规定,CT 系统的空间分辨力和对比度灵敏度从检 验由均匀材料制作的圆盘试块的图象确定。空间分 辨力从分析圆盘试块图象的明锐度导出,对比度灵 敏度从分析圆盘试块图象中心区的统计噪声导出。 圆盘试块的材料、直径、厚度及粗糙度应符合规定。 在规定的采集和显示条件下得到圆盘试块的图象 后,空间分辨力可通过计算边界响应函数(ERF)、点 扩展函数(PSF)和调制传递函数(M TF)确定,对比 度灵敏度由得到的对比度鉴别力函数(CDF)确定。

CT 系统成象的综合性能可用 CDD (对比度-细 节-剂量)曲线描述(图 9-3)。CDD 曲线是在一定照 射剂量下,图象的百分比对比度与圆柱形细节直径 的关系曲线,它综合了细节可识别性与图象对比度、 细节的形状和尺寸以及图象噪声等的关系。图 9-3 为 两条类似CT 系统的CDD 曲线,系统A 是高分

辦力系统,系统B 是低分辨力系统。由图可见,对高 对比度结构,揭示细节的能力较少依赖于成象的射 线剂量(或图象噪声),而主要依赖于系统的分辨力。 1.3.2 伪象

伪象是与物体特征不相符的图象。在 CT 图象 上可能出现伪象,这些伪象可认为是相关噪声。CT 图象上出现的伪象可粗略分为射线束硬化伪象、部 分体积效应伪象、采样数据不足伪象和散射伪象。这 些伪象中一类是 CT 技术的物理原理和数学处理所 固有的,如部分体积效应伪象(部分体积伪象是一个 象素包含的体积内含有不同性质的结构)等;另一类 是 CT 系统装置和软件等方面的不足产生的,如机 械偏差、探测器间的串扰及采样不足等。射线束硬化 伪象则可能是两者的组合。伪象是一个复杂的问题, 消除伪象需从多方面作出努力,如检测工艺等。

1.3.3 CT 数

在医用CT中定义了CT数,即

$$CT \ \mathbf{X} = \left(\begin{array}{c} \frac{\mu_{\rm T}}{\mu_{\rm W}} \end{array} \right) \times 1 \ 000$$

式中 μ_{T} ——人体组织的线衰减系数

µw——水的线衰减系数

水的 CT 数显然为 0, 空气的线衰减系数为 0, 因此其 CT 数为-1 000。

14 射线 CT 系统

2

射线 CT 系统由射线源、机械扫描系统、探测器 与数据采集系统和计算机系统四部分构成,如图 9-4 所示。

工业射线 CT 系统主要采用三种射线源,即低 能 X 射线源 У射线源和高能 X 射线源。理想的射 线源应具有高强度的射线束、单一的能量、尺寸很小 的焦点以及可以调整的射线源能量,以适应不同的 被检物体。

x 射线源具有一定的透照电压范围, 可以产生 较高强度的射线束。但x 射线源产生的是连续谱射

图 9-4 工业CT 系统的基本构成

线, 在穿过不同厚度工件后, 射线束将受到不同的硬 化。这种情况将引起测量数据的不一致, 导致重建图 象的误差。 *У*射线源的主要优点是可以产生高能光 子, 并具有特定的能量。主要的缺点是只能产生有限 强度的射线, 如果增加射线强度, 必需采用较大尺寸 的 *У*射线源, 这将影响系统的空间分辨力, 此外, 其 能量取决于所用的 *У*源放射性同位素, 因此射线源 的能量不能改变。CT 系统对 X 射线源的要求关键 在于 X 射线源的稳定性, 特别是电压的稳定性, 它 的变化将引起 X 射线能量的变化, 产生伪象。

CT 系统的扫描方式目前主要有四种,在工业 应用中主要有两种,即单源、小扇角平移加旋转扫描 系统和单源、大扇角单旋转扫描系统(图 9-5)。

(a) 单源、小扇角平移加旋转扫描系统

(b) 单源、大扇角单旋转扫描系统 图 9-5 工业CT 系统的扫描方式

工业 CT 系统多采用固态分立探测器,固体探测器的材料主要有 CdWO4, CaWO4, BGO, CsI (T1),NaI(T1)和塑料闪烁体。对探测器性能的要求 主要是尺寸、能量转换效率、信噪比、动态范围、稳定 性和响应速度等。

下面以单源、大扇角单旋转扫描系统为例说明 CT 系统的工作过程。由射线源发出的射线经前准 直器,形成一薄的扇形射线束,透过工件的一个层 面,再经后准直器,到达探测器阵列。在数据采集系 统形成一组(投影)数据,传给计算机系统。在计算机 系统控制下,机械扫描系统旋转一定角度(常为 1),进行下一组数据的采集。如此进行下去,完成对 该层面数据的采集。运用这些数据,计算机系统完成 数据处理,给出该层面的重建图象。

CT 系统最主要的技术性能指标包括:

(1) 扫描方式。

(2) 扫描时间, 即完成一个层面数据采集所需 的时间。它与图象矩阵的大小、探测器阵列所含探测 器的多少及射线源的辐射强度等直接相关。

(3) 重建时间, 即计算机系统完成一个层面数 据处理并给出数字图象所需的时间。它与图象矩阵 的大小和重建算法(计算软件)的性能等密切相关。

(4) 分辨力, 即 CT 系统的空间分辨力和密度 分辨力(对比度灵敏度), 它与 CT 系统的信噪比直 接相关, CT 系统的密度分辨力一般为 1%~ 1‰。

(5) 检测范围,即CT系统可检工件的尺寸、厚度等。

目前先进的工业 CT 系统的主要性能为空间分 辨力 4~ 5Lp/mm; 密度分辨力 0 1%~ 0 05%; 扫 描时间 30s~ 30m in; 尺寸测定精度 5~ 25μ m; 扫描 层厚度可控制到 20~ 100μ m; 重建图象矩阵 1 024 × 1 024 象素; 图象类型为三维; 可检验物体的最大直 径可达 360cm, 最大重量可达数吨。

近年来还对下列CT 系统进行了研究:

(1) 锥形束 CT 技术 采用锥形射线束透射, 面检测器采集数据,直接重建物体的三维空间图象。 目前可做到在数秒内重建一个 256³ 个象素的图象, 象素的体积为 0 3mm³。

(2) 多能量多几何尺寸 CT 装置 目前 CT 装置 置已有 150kV,420kV,2~ 15M eV 能量及⁶⁰Co,机械 结构可适应从小尺寸物体到大型固体火箭发动机。

(3)现场应用 CT 装置 已有可携带到现场的 小型 CT 装置,用来直接检验树木年轮等。

2 康普顿散射成象检测技术

2.1 概述

康普顿散射成象检验技术采用散射线成象,射 线源与检测器位于物体的同一侧,其技术上的主要 特点是 单侧几何布置,即射线源与检测器位于物 体的同一侧。 图象的对比度在理论上可达到 100%。 具有层析功能,并且一次可以得到多个截 面的图象。

康普顿散射成象检验技术的局限性主要有:

(1)由于康普顿散射成象技术采用散射线成 象,因此主要适于低原子序数物质、近表面区较小厚 度范围内缺陷的检验。通常它适宜检验的物体表层 区厚度是,钢约为 3mm,铝约为 25mm,塑料和复合 材料约为 50mm。

(2) 在应用时必须考虑基体材料和缺陷对射线 的散射差别、检验要求的分辨力和成象时间。 康普顿散射成象检验技术已应用于检验和研究,如飞机蒙皮的粘结和腐蚀检验,在固体火箭发动机结构的分层检验中,已可检出 0 15mm 的分层间隙;粉末冶金产品在线密度测量,测量 6 7g/cm³左右的密度时,测量的不确定度可达 1%,实验证明还可用于密度为 1.7g/cm³左右的复合材料密度测量;用 4 5mm 的小孔进行康普顿散射成象检验可得到铸件截面的缺陷图象。

2 2 康普顿散射成象技术的原理

在康普顿散射作用过程中, 能量为 hv的入射 X 射线的光量子, 与散射物质原子的轨道电子相互碰 撞, 入射射线光量子的能量一部分转移给反冲电子, 一部分保留在散射光子中。康普顿散射作用近似与 入射光子的能量 E 成反比, 与靶物质的原子序数 Z 成正比。入射光子发生康普顿散射的概率常称为康 普顿散射宏观散射截面, 它除了与入射光子的能量 和物质的原子序数相关外, 还与物质的原子量和密 度相关。由于反冲电子的速度接近光速, 因此, 应采 用相对论处理这一过程。由能量守恒定律和动量守 恒定律, 可得到散射光量子的能量为

 $E = \frac{E}{1 + \alpha(1 - \cos\theta)}$ 式中 E — 散射光子的能量 E — 入射光子的能量 $\alpha = \frac{E}{mC^2}$ m — 电子的静止质量 C — 光在真空中的传播速度 散射光子波长的改变 $\Delta\lambda$ 为 $\Delta\lambda = \lambda - \lambda = \frac{h}{mC}(1 - \cos\theta)$

式中 h——普朗克常数

代入 h, m 和 C 的值, 计算得到

$$\Delta \lambda = 2 426 (1 - \cos \theta)$$

可见,散射光子波长的改变与入射光子的能量无关, 而散射光子的角分布与入射光子的能量密切相关。 研究指出,随着入射光子能量的增大,散射光子将更 趋向于分布在入射光子方向。图 9-6 是散射光子的 角分布与入射光子能量的关系。

康普顿散射成象技术的工作原理如图 9-7a 所 示。射线照射到工件上,由于检测器前面有准直器, 所以从工件不同深层产生的散射线将到达不同的检 测器,在某一层中如果不同点存在性质差异,所产生 的散射线将不同(图 9-7b),检测器测量到的数据也 将不同,从而可对工件中这一层的情况作出判断。

如图 9-7 所示, 从物体中一个小体积元产生, 并

到达检测器的散射线强度为

$$I_s = K I_{W} \mu F_P F_s$$

 $I_s = K I_{W} \mu F_P F_s$
式中 F_P ——入射射线在工件中通过 T 距离产生
的衰减

Fs——散射线到达检测器所产生的衰减

- μ——工件的康普顿散射线衰减系数
- μ 缺陷的康普顿散射线衰减系数
- w ——缺陷在射线照射方向的尺寸

K——比例系数

由上述散射线所形成的缺陷图象的对比度为

$$C = \frac{I_{\rm s} - I_{\rm s}}{I_{\rm s}} = \frac{\mu - \mu}{\mu}$$

可见, 如果 $\mu = 0$, 则可得 C = 1, 即缺陷的对比度将 达到 100%, 这对于常规射线照相检验技术是很难 达到的。显然, 只要改变检测器的设计, 使检测器可 以同时分别接收工件不同深度的散射线, 则可以同 时形成垂直于射线束方向的层析影象。

由上述康普顿散射成象原理可知,康普顿散射 成象检验技术的关键是一次射线应具有适当的能量 和强度,以便产生足够的散射线。与常规射线照相技 术相比,康普顿散射成象检验技术中,射线源的能量 和焦点尺寸的选择,都不需要像常规射线照相技术 那样严格考虑,因为它们不会产生那样重要的影响。

2 3 康普顿散射成象系统

康普顿散射成象系统一般由射线源, 扫描机构 散射线检测系统, 计算机与软件系统, 图象显示和数 据存储系统以及控制系统组成。

一种典型的扫描机构的设计思路是, 通过缝形 光阑形成一扇形射线束, 进一步通过可旋转的具有 一系列螺旋形排列的小孔的准直器形成一细射线 束, 在准直器旋转过程中, 得到扫描射线束。在整个 扫描机构移动中完成对工件的扫描检测。

检测器阵列的材料常选用BGO (锗酸铋)。

近年来,国外有的公司已研制了这类设备,其主要技术指标为,射线源:160kV/19mA;检测器:22 个;分辨力:面积0.4mm×0.4mm,深度0.4mm;扫 描面积:50mm×100mm;扫描时间:1.25~6.25 min;图象象素:250×500;可检厚度:钢为5mm,铝 为20mm,塑料为50mm。

收稿日期: 1999-08-10

(上接第 405 页)

- 10 张淑仪 激光超声与材料无损评价 应用声学, 1992, 11(4): 1- 6
- 11 Castaings M, Hosten B. The use of electrostatic, ultrasonic, air-coupled transducers to generate and receive L am b w aves in anisotropic, viscoelastic plates U ltrasonics, 1998, 36(5): 361-365
- 12 陈彦华,李明轩.利用人工神经网络实现缺陷类型识别 应用声学,1998,17(2):1-5
- Liu Zhenqing, Wei Moan Fuzzy detection for ultrasonic flaw inspection of highly scattering materials Chinese Journal of Acoustics, 1997, 16 (4): 332- 338
- 14 L iu ZQ, LuMD, W eiMA. Structures noise reduction of ultrasonic signals using artificial neural network adaptive filtering U ltrasonics, 1997, 35(4): 325-328

收稿日期: 1999-12-13